Prof. Dr.-Ing. Grit Behrens

DATA MINING METHODS FOR FAILURE CLASSIFICATION ON PV-MODULES UNDER FIELD-CONDITIONS

G. Behrens, A. Dercho, H. Quakernack, T. Wächter, S. Hempelmann, I. Kruse

Munich, 23th of June 2016

Data-Mining in PV

- Data Mining ist the computational proces of discovering patterns in large data sets
- Big data sets can come from
 - monitoring PV-plants best way module based data,
 - picturing and video streaming in PV-fields IR, EL,
 - environment data climate, irradiation, ... ✓
 - Module specification data data sheet
- Goals by data Mining in PV-fields:
 - Failure classification
 - Failure prediction
 - Predictions for optimal component selection

4 Steps of Data Mining-Process

[1] Runkler, "Data Mining - Methoden und Algorithmen intelligenter Datenanalyse"

1. Step: Data Collection with SunSniffer®

- Sunsniffer®-Technology
 - Modulbased measuring of temperature and voltage
 - Powerline- data communication
 - Integrated in junction box

[2] Kilper et.al., "A new generation of PV Monitoring system with high-grade remote diagnostics based on module level monitoring and integrated yield simulation", PVSEC2015

1. Step: Data Collection by Weather-API

http://www.forecast.io, MUNICH 23.06.2016

weather data for example:

- CloudeCover [0,1]
- Temperature [°F]
- Worldwide locations

Request-Types:

- Current conditions
- Forecasts
- historical data ✓

1000 requests a day for free

>1000 requests: 0.0001\$ each

HTTP-Request:

https://api.forecast.io/forecast/APIKEY/LATITUDE.LONGITUDE.TIME

HTTP-Response(JSON):

All weather data for given day, hour-by-hour resolution

2. Step: Data PreProcessing Filtering

Example module temperature:

- outliers correction
- Interpolation outliers ore missing
 - by next neighbours
 - time equidistant values

$$x_f^{(i)} = \frac{x_{f-1}^{(i)} + x_{f+1}^{(i)}}{2}$$

Modul temperature values before (left) and after interpolation operations (right)

2. Step: Data PreProcessing Normalisation I/II

- Individual features have very often very different rages of values.
- Numerical classification methods would ignore features with less value ranges

Feature vector in project:

feature	unit	Value range
Module Temperatur	[oC]	20 - 60
Module Voltage	[V]	0 - 100
String Current	[A]	0 - 20
Weather Temperatur	[oC]	-20 - 50
Solar efficiency *		~(0 - 10)
Cloud Covering		0 - 1

^{*} Solar efficiency = (sunset - sunrise)* (1- cloud covering)

2. Step: Data PreProcessing Normalisation II/II

For example:

- reziprocal transformation of values of module temperatures
- Gives values between [-1,1]

$$f: R \setminus \{0\} \to R \setminus \{0\}$$
$$f(x) = f^{-1}(x) = 1/x$$

- Modul temperature values after filtering
 [20, 60]
- After reziprocal calculations
 [-0.1, 0.04]

3. Step: Data Analysis

Feature vector optimisation

- Find out dependencies between components and most significant features
- Vizualisation
- Expert intervies

Correlation matrix indices for relations between feature i and j:

$$c_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \left(x_k^{(i)} - \overline{x}^{(i)} \right) \left(x_k^{(j)} - \overline{x}^{(j)} \right), \quad mit \quad i, j = 1, ..., p$$

* n - number of features vectors, p - number of components of feature vector

Feature 1	Feature 2	Correlation
Modul Temp.	Temperatur	82,02
Modul Temp.	String Current	43,98
Modul Temp.	Module Vol.	13,42
String Current	Temperatur	7,26
Module Voltage	Temperatur	2,34

- yellow Module Temperature,
- orange String Currency

4. Step: Classification by Neural Network Classifier I/II

- WEKA Waikato Environment for Knowledge Analysis [3]
 - Open Source Library for Java
 - Preprocessing, normalisation, classification, visualiszation,...

Results for training on 3 classes, all data:

- Defect diode
- No failure
- Mechanically destroyed

Orange: right classified 81,57% **Yellow:** bad classified 18,42%

- false positives:
- some modules with failure classified in the "no failure" result class

4. Step: Classification by Neural Network Classifier II/II

Results for training on 4 classes, 3 PV-Fields monitored by Sunsniffer Only sunny days:

- Defect bypass diode
- No failure
- Mechanically destroyed
- Hailstorme damage
- Shadowing can recognized with 99% accuracy (SVM better than NN) [4]

Right classified		Momen- tum	Learning Rate	Training Data Ratio
100%	584	0,1	0,1	98%
96%	69	0,2	0,5	66%

[4] G. Behrens, et. al. "Machine Learning Methods for partial shading detection in monitoring data on PV-sytems" PVSEC2014

Results

- Data Mining Algorithms are useful on large data sets from module based monitoring data taken with low-cost SunSniffer®-Sensor.
- Weather data taken from low cost Internet API are useful
- Our Software application is easy to adopt to any monitoring system with possibility of failure labeling.
- High recognition rates give up to 96% accuracy in failure detection.
- Recognition of different failure types is possible partly based based on additional information from weather sensors
- Different module types in the 3 PV-plants were not a problem.
- The recognition rate results are better than better are the training data sets:
 - Quantity: than more labeled failure types exist (up to 100%)
 - Quality: than more optimized is the training data set (excellent conditions, significant features)

Oral Presentation 5DO_12_4 - PVSEC 2016, Munich 23th of June 2016

Prof. Dr.- Ing. Grit Behrens